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Abstract. Topology optimization design is a technical process that determines the optimal 
layout of materials with extreme value of objective function. In this paper, an improved 
bidirectional evolutionary structural optimization (BESO) method for topology 
optimization design with multiple boundary conditions is proposed. The improved BESO 
method based on the homogenization theory is utilized to establish the mathematical model 
of the topology optimization design of microstructure, and the periodic boundary condition 
and Hashin-Shtrikman boundary condition are taken as boundary constraints. In this 
method, the advantages of the BESO method are combined with those of the 
homogenization method. Therefore, this method is suitable for the topology optimization 
design of microstructure. In addition, reasonable results can be obtained with a single 
volume constraint by this method. Finally, the effectiveness and feasibility of the proposed 
method are demonstrated by several typical numerical examples. 

1. Introduction 

Structural optimization (including size optimization, shape optimization and topology 
optimization) in engineering design has been studied for a few decades. By now, it has been largely 
facilitated and enabled to practice due to the advances in high-performance computing. Topology 
optimization is one of the material constitutive optimization methods. Topology optimization allows 
for greater design freedom than size optimization and shape optimization, which deal with variables 
such as thicknesses, cross-sectional areas of structural members and geometric features of 
predefined structural configurations. 

There are several methods for topology optimization design. The homogenization method, an 
early and popular method for topology optimization, was first proposed by Bendsøe and Kikuchi [1]. 
This method is represented by a microstructure that redistributes the voids and the materials. 
Another important method is also originally introduced by Bendsøe [2], and it is referred to as 
SIMP (solid isotropic microstructure with penalization) method or the power law method (Rozvany 
et al. [3]). The SIMP method has been recognized as a computationally efficient method for 
structural topology optimization problems (Rozvany [4]). In the SIMP method, it assumes that the 
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material property of all elements is constant, and the design variables are the densities of each 
element. In fact, SIMP method is a special case of the homogenization method. Another popular 
method for topology optimization design is level-set-based method [5-8]. The level-set functions [9] 
are applied to parametric material domain in the methods. The structural boundary is represented 
exactly where the level-set function is zero. The solid material is represented where the level-set 
function is positive, and the void is represented where the level-set function is negative. Moreover, 
evolutionary structural optimization (ESO) proposed by Xie and Steven [10] is also popular for 
topology optimization design. The problem of single-material topology optimization can be directly 
solved by ESO method (Bendsøe and Sigmund [11]). In ESO method, the topology optimization of 
a structure is achieved through removing the elements of material which are the lowest sensitivity 
of stress energy or strain energy (Xie and Steven [10]; Hinton and Sienz [12]; Querin et al. [13]). 
However, ESO method only removes elements, not adds elements. Bi-directional evolutionary 
structural optimization (BESO) method is introduced by Querin et al. [13, 14]. BESO method is an 
extension of ESO method which allows new elements to be added in the process of topology 
optimization. Due to the easy implementation, BESO/ESO method has been widely applied in 
engineering (for example several designs of landmark building [15]). Recently, Xia and Breitkopf 
[16] proposed a method of material design using topology optimization and energy-based 
homogenization theory, and solved the problem of topology optimization with single periodic 
boundary condition. 

Combined with the energy-based homogenization theory and BESO theory which are both based 
on variable density method, an improved BESO method is proposed for microstructure topology 
optimization design with multiple boundary conditions. In this method, an average sensitivity 
filtering method is introduced, and a volume rate of evolution is applied to determine the structural 
volume, which enhances the numerical stability and the convergence rate. Moreover, the optimal 
microstructure with the periodic boundary conditions and the Hashin-Shtrikman boundary condition 
can be obtained. 

The remaining part of this paper is organized as follows: the next section introduces the energy-
based homogenization theory. In section 3, the periodic boundary conditions and the Hashin-
Shtrikman boundary condition are described. In section 4, the mathematical model of improved 
BESO method for topology optimization design is established. In section 5, several typical 
numerical examples are presented to demonstrate the effectiveness of this method. Finally, a 
conclusion is given in section 6. 

2. Energy-Based Homogenization Method 

 

Figure 1  The relationship between the macrostructure (left) and microstructure (right) by a 
material point constituted. 

Homogenization method is an effective topology optimization method for the microstructure of 
single material. In the scope of linear elasticity, the microstructures of the material are periodic 
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distribution in the corresponding macrostructure. The scale relationship between the macrostructure 
and microstructure is described in the Figure 1, and the relationship between the macro size x and 
the micro size y can be expressed as 

y

x
                                                                          (1) 

In terms of the asymptotic homogenization, the macro displacement field )(xu   is expanded as 
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When only the first order terms of the above equation is considered, the homogenized stiffness 
tensor H

ijklE  can be written as 
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where H
ijklE  is homogenized elasticity tensor by Einstein notation; ijpqE  is elasticity tensor by 

Einstein notation; )(kl0

pq  is unit test strain fields; and )*(kl
pq  is periodic fluctuation strain fields. 

This paper adopts the energy-based method instead of the asymptotic method. This method 
imposes the unit strains directly on the boundaries of the base cell. Therefore, the formula 
( )*()( kl

pq

kl0

pq  ) corresponds to )(klA

pq . In terms of element mutual energies, the base cell Y is 

discretized into N finite elements for FEA. Then, Equation (3) is approximately written as 
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where )(klA

eu and )(ijA

eu  are the element displacement solutions corresponding to )(kl0

pq , and ek  is the 

element stiffness matrix. In two-dimension case, the subscript of H
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where the terms ijQ  and element mutual energies ij
eq  are described as follows: 
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3. Boundary Conditions 

In this paper, the performances of the microstructure with the periodic boundary conditions 
(PBC) and Hashin-Shtrikman boundary condition are mainly studied. When a single cell is analyzed, 
periodic boundary conditions must be applied to the cell to ensure compatibility of deformation and 
correct computation of stress and strain. Hashin-Shtrikman boundary condition is utilized to deal 
with the parameterized design variables. 
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3.1.  Periodic Boundary Conditions (PBC) 

Under the assumption of periodicity [16], the displacement field of the base cell is as follows: 
*

ii

0

iji uyu                                                                     (7) 

where *
iu  is the micro periodic fluctuation field. Due to the *

iu  can not be determined, the 

displacement field becomes 
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where k and k are a pair of two opposite parallel boundary surfaces which are oriented 
perpendicular to the k-th direction (k signifies the direction of the coordinates, k=1, 2). The 
parameter *

iu  can be eliminated by   k

i

k

i uu , and   k

j

k

j

k
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otherwise, 0y k
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3.2. Hashin-Shtrikman Boundary Condition 

In this paper, the BESO material interpolation method is used to obtain the density of the 
interpolation. The elastic tensor is changed as followed 

0

ijld

p

eeijld CC  )(                                                                  (9) 

where 0

ijldC
 
is the elastic tensor before optimization, e is the element density, ijldC  is the optimized 

elastic tensor, the parameter p  is the penalization factor. 
The Hashin-Shtrikman boundary condition for 2D model can be described as follows 
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where k  is the bulk modulus,   is the shear modulus of elasticity. The parameters 0k  and 0  are 
the bulk modulus and the shear modulus of elasticity of single phase material respectively, and they 
can be calculated from the following equation 
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where 0  is the Poisson ratio. The parameters (k and ) are obtained by the following formula 
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According to the Hashin-Shtrikman boundary condition, the penalization factor p  is 
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4. Optimization Model based BESO 

4.1. Problem Statement 

In this paper, an improved method based on the BESO method [17] is applied, so the element 
elasticity tensor eE  is defined as 

)()( minmin EEEE 0

p

eee                                                        (14) 

where 0E  is the elasticity tensor of solid material, and minE  is the elasticity tensor of void material. 

Here minE  is defined 910 instead of 0, thus avoiding the singularity. 
In this paper, the improved BESO method is used to obtain the density of the interpolation based 

on the BESO method, and the topology optimization problem is described as 
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where )(klAU  is the displacement vector, klF  is the force vector. The parameter d is the spatial 
dimension, ev  is the element volume, and   is the maximum volume fraction. For 2D case, the 

objective ))(( H
ijklEc  minimization (the maximization of the material bulk modulus) is 

)( 2222221111221111 EEEEc                                                   (16) 

When the maximization of material shear modulus is considered 

1212Ec                                                                    (17) 

The flowchart of the proposed method to solve the topology optimization problem of 
microstructure is shown in Figure 2. 
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Figure 2  The diagram of the numerical implementation process by the improved BESO method. 

4.2. Sensitivity Analysis based BESO 

The sensitivity of this topology optimization can be described as 

c

. The sensitivity number in 

BESO that shows the relative ranking of all sensitivities can be defined as: 
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where c denotes the bulk modulus or the shear modulus. i  is the sensitivity value of the i-th 

element. 
Topology optimization usually goes with numerical instabilities such as checkerboard and mesh-

dependency. To void those phenomena, a mesh-dependency filter is used in this work. Then, the 
nodal sensitivity numbers are converted back into element before the topology can be determined 
based on the image-process techniques [18,19]. The filter functions are based on a length-scale minr  
which is to identify the nodes that influence the sensitivity of the i-th element. The sensitivity is 
modified by sensitivity filter as follows: 
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When the density filter is considered, the densities are transformed into i  as follows 
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Assume that a circle of radius minr  centred at the centroid of the i-th element is drawn. Thus a 

circular sub-domain i  is generated, and the paramter M is the number of nodes in i , ijr  is the 

distance between the center of the element i and node j. n
j is the node sensitivity value of the j-th 

element. )( ijrw  is the weight factor which is given as 
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In the BESO algorithm, the objective function and topology is impossible to be convergent 
because only two discrete design variables min  and 1 is applied. A method of averaging sensitivity 
number with its historical information is applied to improve the primary sensitivity number [19]. 
The modified sensitivity is as follows 
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where T denotes the T-th iteration. Let iTi  , , which will be used in the next iteration, thus the 
sensitivity information is considered in the previous iteration. This method can control the change 
of design variables for solid and void elements. Therefore, this averaging sensitivity number 
method can greatly stabilizes the evolution process. 

4.3. Optimality Criteria Method 

The optimization problem (15) can be solved by using many approaches such as Optimality 
Criteria (OC) method, Method of Moving Asymptotes (MMA) and Sequential Linear Programming 
(SLP) and so on. This paper will use a standard OC method to solve the optimization problem. 

Following the heuristic updating scheme [11], the design variables can be formulated as 
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where m is a move limit, which is usually set as 0.2;   is a damping coefficient; and eB  can be 

obtained from the optimality condition as follows: 
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where   is the Lagrangian multiplier that can be selected by the bi-section algorithm to satisfy the 
constraint of material volume fraction. The structural volume is determined by the iterative formula, 
the target volume *V  and volume rate of evolution er. Therefore, the structural volume is defined as 
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4.4. Numerical Solution of the Homogenization Equations 

The global displacement vector U is separated into four parts: 1U  is the prescribed displacement 
values; 2U  is the interior nodes displacement; 3U and 4U  are the displacements of nodes which 

located on the boundaries of the base cell, and they satisfy the relationship WUU  34 . The 

parameter W  can be calculated by (8). The constraint klkl FKUA )(  can be expanded to 
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where 1F  equals to the reaction forces at the nodes with prescribed displacements, 2F =0 and 

0 43 FF . Because K is a symmetric matrix, i.e. jiij KK  , Formula (26) can be converted into 
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5. Numerical Examples 

5.1. 2D Examples for Maximizing the Bulk Modulus 

In this case, a single cell Y is discretized into 100100  4-node quadrilateral elements. The 
Young’s modulus of the solid material is set as 10 E  and the Poisson’s ratio is set as 3.0 . The 
maximum volume fraction, the evolution rate, the filter radius and penalty exponent are set as 

5.0*V , 02.0er , 3r  and 3p , respectively. Figure 3 describes the different results with 
different filter methods, where, the blue regions and green regions denote solid material and the 
void, respectively. 

     

(a)     (b)     (c) 

Figure 3  The optimal solutions of a single cell with different filter methods. ((a) The initial design 
domain; (b) The optimal microstructure which is obtained by the sensitivity filtering (c=-0.4776, 
iteration: 132); (c) The optimal microstructure which is obtained by the density filtering (c=-0.6474, 
iteration: 256)). 
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(a)       (b) 

     

(c)       (d) 

Figure 4  The optimal solutions of a single cell with penalty factor p=3 and different filter radii. ((a) 
The optimal microstructure which is obtained by the sensitivity filtering and the filter radius r=5 
(c=-0.4220,iteration: 225); (b) The optimal microstructure which is obtained by the density filtering 
and the filter radius r=5 (c=-0.6536,iteration: 241); (c) The optimal microstructure which is 
obtained by the sensitivity filtering and the filter radius r=2 (c=-0.2596,iteration: 123); (d) The 
optimal microstructure which is obtained by the density filtering and the filter radius r=2 (c=-
0.3395,iteration: 455)). 

     

(a)       (b) 

     

(c)       (d) 

Figure 5  The optimal solution of a single cell with the filter radius r=5 and different penalty factors. 
((a) The optimal microstructure which is obtained by the sensitivity filtering and penalty factor p=5 
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(c=-0.55816, iteration: 396); (b) The optimal microstructure which is obtained by the density 
filtering and the penalty factor p=5 (c=-0.6206, iteration:218); (c) The optimal microstructure which 
is obtained by the sensitivity filtering and penalty factor p=7 (c=-0.5544, iteration: 396); (d) The 
optimal microstructure which is obtained by the density filtering and the penalty factor p=7 (c=-
0.5590, iteration: 51)). 

To study the influences of the filter radius and the penalty factor, two cases are proposed in this 
paper. In case 2 (Figure. 4), all parameters are the same as those in case 1, but the filter radii are 
defined as 5r   and 2r  , respectively. In case 3 (Figure. 5), all parameters are the same as those 
in case 2, but the penalty factors are set as 5p   and 7p  , respectively. The objective function 
value c and the number of iterations are shown in each figure. 

From the above cases, it can be found that the boundaries of optimal microstructures are blurry 
using the sensitivity filter method. This is because the middle densities are not avoided in the 
homogenization method. The optimization structure with density filtering has a more clear material 
layout with density filtering than that with sensitivity filtering, and their objective function values 
are bigger than the cases with sensitivity filtering. The smaller the filter radius, the clearer the 
microstructure when the density filtering is applied. From the case3, it can be observed that both 
sensitivity filtering and density filtering have little influence with the penalty factor value, but the 
objective function value is little change. Moreover, it can be found that several reasonable optimal 
results with stability and quickness are obtained by the proposed method. 

5.2. 2D Examples for Maximizing the Shear Modulus 

In this section, a single cell Y is discretized into 100100  4-node quadrilateral elements. The 
Young’s modulus of the solid material is 10 E  and the Poisson’s ratio  =0.3. The maximum 

volume fraction is given V*=0.5. The parameter evolution rate is er =0.02. The initial design 
domain is same to the above cases of the maximizing the bulk modulus (Figure 3(a)). It is worth 
noting that different optimal results may be obtained with different parameters. 

The following figures describe the different optimal results with different filter methods and 
different parameters. 
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(a)     (b)     (c) 

    

(d)     (e)     (f) 

Figure 6  The optimal results with different parameters ((a) The optimal result with sensitivity 
filtering (p=3, r=3) after 33 iterations; (b) The optimal result with density filtering (p=3, r=3) after 
50 iterations; (c)The optimal result with sensitivity filtering (p=3, r=5) after 27 iterations; (d) The 
optimal result with density filtering (p=3, r=5) after 77 iterations; (e) The optimal result with 
sensitivity filtering (p=3, r=7) after 22 iterations; (f) The optimal result with density filtering (p=3, 
r=7) after 81 iterations). 

Table 1  The changes of objective function c with the change of algorithm parameters. 

Penalty Factor  
p 

Filter Radius  
r 

Objective Function c  
(Sensitivity Filtering) 

Objective Function c 
(Density Filtering) 

3 5 -0.1254 -0.1214 
3 3 -0.1312 -0.1284 
3 7 -0.1196 -0.1144 
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(a)     (b)     (c) 

     

(d)     (e)     (f) 

Figure 7  The optimal results with different parameters ((a) The optimal results with sensitivity 
filtering (p=3, r=5) after 27 iterations; (b) The optimal results with density filtering (p=3, r=5) after 
77 iterations; (c)The optimal results with sensitivity filtering (p=5, r=5) after 15 iterations; (d) The 
optimal results with density filtering (p=5, r=5) after 65 iterations; (e) The optimal results with 
sensitivity filtering (p=7, r=5) after 15 iterations; (f) The optimal results with density filtering (p=7, 
r=5) after 51 iterations). 

Table 2  The change of objective function c with the change of algorithm parameters. 

Penalty Factor  
p 

Filter Radius  
r 

Objective c  
(Sensitivity Filtering) 

Objective c 
(Density Filtering) 

3 5 -0.1254 -0.1214 
5 5 -0.1232 -0.1138 
7 5 -0.1222 -0.1096 

From Table 1 and Table 2, it can be observed that both sensitivity filtering method  and density 
filtering method have little influence with different penalty factors and filter radii for the objective 
function (maximum shear modulus). Therefore, the proposed method is suitable for topology 
optimization of microstructures, by which reasonable results with good stability can be obtained. 

6. Conclusions 

In this paper, an improved BESO topology optimization method with multiple boundary 
conditions is proposed. The maximization of the material bulk modulus and the maximization of 
material shear modulus are taken as the objective of microstructural topology optimization with the 
volume constraints, respectively. The mathematical model of topology optimization is established 
by combining the BESO method with the homogenization theory, and it satisfies the periodic 
boundary condition and Hashin-Shtrikman boundary condition simultaneously. The effectiveness 
and feasibility of proposed method are demonstrated by several typical numerical examples. The 
proposed method is suitable for topology optimization of microstructures and reasonable results can 
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be obtained with fast convergence. Moreover, the numerical instability can be avoided by this 
method. 
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